Adaptive Parameter Optimization For An Elliptic-Parabolic System Using The Reduced-Basis Method With Hierarchical A-Posteriori Error Analysis

07/24/2023
by   Behzad Azmi, et al.
0

In this paper the authors study a non-linear elliptic-parabolic system, which is motivated by mathematical models for lithium-ion batteries. One state satisfies a parabolic reaction diffusion equation and the other one an elliptic equation. The goal is to determine several scalar parameters in the coupled model in an optimal manner by utilizing a reliable reduced-order approach based on the reduced basis (RB) method. However, the states are coupled through a strongly non-linear function, and this makes the evaluation of online-efficient error estimates difficult. First the well-posedness of the system is proved. Then a Galerkin finite element and RB discretization are described for the coupled system. To certify the RB scheme hierarchical a-posteriori error estimators are utilized in an adaptive trust-region optimization method. Numerical experiments illustrate good approximation properties and efficiencies by using only a relatively small number of reduced basis functions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro