Achieving Near Instance-Optimality and Minimax-Optimality in Stochastic and Adversarial Linear Bandits Simultaneously

02/11/2021
by   Chung-Wei Lee, et al.
0

In this work, we develop linear bandit algorithms that automatically adapt to different environments. By plugging a novel loss estimator into the optimization problem that characterizes the instance-optimal strategy, our first algorithm not only achieves nearly instance-optimal regret in stochastic environments, but also works in corrupted environments with additional regret being the amount of corruption, while the state-of-the-art (Li et al., 2019) achieves neither instance-optimality nor the optimal dependence on the corruption amount. Moreover, by equipping this algorithm with an adversarial component and carefully-designed testings, our second algorithm additionally enjoys minimax-optimal regret in completely adversarial environments, which is the first of this kind to our knowledge. Finally, all our guarantees hold with high probability, while existing instance-optimal guarantees only hold in expectation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro