A Theory of Second-Order Wireless Network Optimization and Its Application on AoI

01/17/2022
by   Daojing Guo, et al.
0

This paper introduces a new theoretical framework for optimizing second-order behaviors of wireless networks. Unlike existing techniques for network utility maximization, which only considers first-order statistics, this framework models every random process by its mean and temporal variance. The inclusion of temporal variance makes this framework well-suited for modeling stateful fading wireless channels and emerging network performance metrics such as age-of-information (AoI). Using this framework, we sharply characterize the second-order capacity region of wireless access networks. We also propose a simple scheduling policy and prove that it can achieve every interior point in the second-order capacity region. To demonstrate the utility of this framework, we apply it for an important open problem: the optimization of AoI over Gilbert-Elliott channels. We show that this framework provides a very accurate characterization of AoI. Moreover, it leads to a tractable scheduling policy that outperforms other existing work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro