A Theoretical Framework for Bayesian Nonparametric Regression: Orthonormal Random Series and Rates of Contraction

12/15/2017
by   Fangzheng Xie, et al.
0

We develop a unifying framework for Bayesian nonparametric regression to study the rates of contraction with respect to the integrated L_2-distance without assuming the regression function space to be uniformly bounded. The framework is built upon orthonormal random series in a flexible manner. A general theorem for deriving rates of contraction for Bayesian nonparametric regression is provided under the proposed framework. As specific applications, we obtain the near-parametric rate of contraction for the squared-exponential Gaussian process when the true function is analytic, the adaptive rates of contraction for the sieve prior, and the adaptive-and-exact rates of contraction for the un-modified block prior when the true function is α-smooth. Extensions to wavelet series priors and fixed-design regression problems are also discussed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro