A Survey of Surface Defect Detection of Industrial Products Based on A Small Number of Labeled Data

03/11/2022
by   Qifan Jin, et al.
0

The surface defect detection method based on visual perception has been widely used in industrial quality inspection. Because defect data are not easy to obtain and the annotation of a large number of defect data will waste a lot of manpower and material resources. Therefore, this paper reviews the methods of surface defect detection of industrial products based on a small number of labeled data, and this method is divided into traditional image processing-based industrial product surface defect detection methods and deep learning-based industrial product surface defect detection methods suitable for a small number of labeled data. The traditional image processing-based industrial product surface defect detection methods are divided into statistical methods, spectral methods and model methods. Deep learning-based industrial product surface defect detection methods suitable for a small number of labeled data are divided into based on data augmentation, based on transfer learning, model-based fine-tuning, semi-supervised, weak supervised and unsupervised.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro