A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate

09/02/2023
by   Jim Magiera, et al.
0

Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface. We consider the sharp-interface motion of compressible two-component flow, and propose a heterogeneous multiscale method (HMM) to describe the flow fields accurately. The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics simulations on the microscale level. Notably, the multiscale approach is necessary to compute the interface dynamics because there is – at present – no closed continuum-scale model. The basic HMM relies on a moving-mesh finite-volume method, and has been introduced recently for compressible one-component flow with phase transitions in [Magiera and Rohde, JCP. 469 (2022)]. To overcome the numerical complexity of the molecular-dynamics microscale model a deep neural network is employed as an efficient surrogate model. The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space-dimensions. Up to our knowledge such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro