A Case for Lifetime Reliability-Aware Neuromorphic Computing

07/04/2020
by   Shihao Song, et al.
0

Neuromorphic computing with non-volatile memory (NVM) can significantly improve performance and lower energy consumption of machine learning tasks implemented using spike-based computations and bio-inspired learning algorithms. High voltages required to operate certain NVMs such as phase-change memory (PCM) can accelerate aging in a neuron's CMOS circuit, thereby reducing the lifetime of neuromorphic hardware. In this work, we evaluate the long-term, i.e., lifetime reliability impact of executing state-of-the-art machine learning tasks on a neuromorphic hardware, considering failure models such as negative bias temperature instability (NBTI) and time-dependent dielectric breakdown (TDDB). Based on such formulation, we show the reliability-performance trade-off obtained due to periodic relaxation of neuromorphic circuits, i.e., a stop-and-go style of neuromorphic computing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro